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ABSTRACT

Enhancements of multivariate postprocessing approaches are presented that generate statistically cali-

brated ensembles of high-resolution precipitation forecast fields with physically realistic spatial and temporal

structures based on precipitation forecasts from the Global Ensemble Forecast System (GEFS). Calibrated

marginal distributions are obtained with a heteroscedastic regression approach using censored, shifted

gamma distributions. To generate spatiotemporal forecast fields, a new variant of the recently proposed

minimum divergence Schaake shuffle technique, which selects a set of historic dates in such a way that the

associated analysis fields have marginal distributions that resemble the calibrated forecast distributions, is

proposed. This variant performs univariate postprocessing at the forecast grid scale and disaggregates these

coarse-scale precipitation amounts to the analysis grid by deriving a multiplicative adjustment function and

using it to modify the historic analysis fields such that they match the calibrated coarse-scale precipitation

forecasts. In addition, an extension of the ensemble copula coupling (ECC) technique is proposed.Amapping

function is constructed that maps each raw ensemble forecast field to a high-resolution forecast field such that

the resulting downscaled ensemble has the prescribed marginal distributions. A case study over an area that

covers the Russian River watershed in California is presented, which shows that the forecast fields generated

by the two new techniques have a physically realistic spatial structure. Quantitative verification shows that

they also represent the distribution of subgrid-scale precipitation amounts better than the forecast fields

generated by the standard Schaake shuffle or the ECC-Q reordering approaches.

1. Introduction

Ensemble precipitation forecasts are routinely gener-

ated at operational weather prediction centers worldwide

(Molteni et al. 1996; Toth and Kalnay 1993; Charron

et al. 2010) and provide valuable information about

the flow-dependent forecast uncertainty. Unfortu-

nately, systematic biases often affect all ensemble

members, and not all sources of uncertainty are

represented by the ensemble; it therefore cannot

be considered a sample that represents the predictive

distribution of observed precipitation (Park et al.

2008; Hamill et al. 2008; Bougeault et al. 2010). To

obtain reliable probabilistic guidance from ensem-

ble precipitation forecasts, a number of statistical

postprocessing techniques have been proposed, in-

cluding nonparametric methods such as the analog

method (Hamill and Whitaker 2006; Hamill et al. 2015)

or decision-tree methods (Herman and Schumacher

2018; Whan and Schmeits 2018), and parametric ap-

proaches such as extended logistic regression (Wilks

2009; BenBouallègue 2013), BayesianModelAveraging

(Sloughter et al. 2007; Berrocal et al. 2008; Kleiber et al.

2011), nonhomogeneous regressionmethods (Scheuerer

2014; Scheuerer and Hamill 2015; Stauffer et al. 2017),

kernel dressing methods (Hamill and Scheuerer 2018),

and methods based on a Bayesian modeling paradigm
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(Herr and Krzysztofowicz 2005; Wu et al. 2011;

Robertson et al. 2013).

For a number of applications, the joint distribution of

precipitation amounts across different locations in space

and different forecast lead times is required. If, for ex-

ample, the ensemble of precipitation forecasts are used as

inputs to an ensemble hydrological forecast system, it is

crucial that the way precipitation amounts accumulate

over time and across different subbasins is represented

correctly. Another type of spatial and temporal aggrega-

tionwheremultivariate aspects of the forecast distribution

are important is the maximal precipitation amount over a

certain period of time and across several forecast grid

points within a certain district, a quantity that is relevant

to inform severe weather warnings. One of the prevalent

approaches to reconstructing the space–time variability in

forecasted precipitation fields is the ensemble copula

coupling (ECC) technique (Roulin and Vannitsem 2012;

Schefzik et al. 2013; Flowerdew 2014), where the spatio-

temporal relationships of the postprocessed precipita-

tion fields are inherited from the raw ensemble. Another

technique that is particularly common in the hydrology

literature is the Schaake shuffle (Clark et al. 2004; Schaake

et al. 2007), where historic observations serve as a ‘‘de-

pendence template’’ for space–time variability. Several

recent publications (Schefzik 2016; Scheuerer et al. 2017;

Bellier et al. 2017a) have addressed one of the short-

comings of the Schaake shuffle—the lack of flow de-

pendence of the space–time relationships—by suggesting

algorithms that choose historic dates such that theweather

situation at these dates is similar to the one anticipated by

the forecast. In most of the articles that study multivariate

probabilistic precipitation forecasts, the spatial dimension

of the multivariate distribution is on the order of 10–100

(e.g., subcatchments of a river basin), and the articles

considering gridded forecasts often employ standard ver-

ification metrics but do not discuss whether the post-

processed precipitation fields are physically realistic. A

noteworthy exception is a recent comparison study by

Wu et al. (2018), which includes example plots of the re-

spective precipitation fields. However, the example they

chose does not illustrate the inherent limitations of the

different, multivariate postprocessing techniques.

In this paper we compare five different multivariate

postprocessing techniques—three variants of the Schaake

shuffle and two variants of the ECC technique—and as-

sess their ability to generate ensembles of high-resolution

precipitation forecast fields that are physically realistic

and provide an adequate representation of the space–

time variability at the analysis scale. In section 2 we de-

scribe the forecast and observation data used in this study.

The statistical postprocessing methodology is explained

in section 3, where we describe the approach used to

generate reliable univariate forecast distributions for

precipitation accumulations, review the Schaake shuf-

fle and ECC technique, discuss their limitations with

regard to generating spatially and temporally coher-

ent precipitation forecast fields, and propose new im-

plementations that address some of these limitations.

A quantitative comparison of all four techniques is

performed in section 4. We finally discuss the limita-

tions that still exist for the two new methods and

point out avenues for further improvement. All ex-

periments and methodological development have been

performed using the statistical software R (R Core

Team 2017; program code is available at https://github.

com/mscheuerer/PrecipitationFields).

2. Data used in this study

The postprocessing methodology discussed here is ap-

plied to forecasts of 6-h precipitation accumulations by

NOAA’s Global Ensemble Forecast System (GEFS)

during the period from January 2002 to December 2013.

Forecast data were obtained from the second-generation

GEFS reforecast dataset (Hamill et al. 2013), which

consists of 11 ensemble member forecasts on a Gaussian

grid at ;1/28 grid spacing, initialized at 0000 UTC. These

forecasts are calibrated and verified against climatology-

calibrated precipitation analyses (Hou et al. 2014), which

were obtained on a ;2.5-km grid inside the contiguous

United States. We study an area in northwestern

California between approximately 124.08 and 122.08W
longitude and between 38.48 and 39.88N latitude, covering

theRussianRiver watershed.Eleven grid points of the 1/28
GEFS forecast grid overlapping this area are considered,

and the lower-left grid point is omitted since the associ-

ated grid cell is mainly over the ocean (see Fig. 1, first

row). Likewise, we only retain the analysis grid points

associated with land surfaces, which amounts to a total of

3262 grid points at the 2.5-km resolution. We consider

four consecutive 6-h accumulation periods, correspond-

ing to forecast lead times 48–54h, 54–60h, 60–66h, and

66–72h. Figure 1 depicts the forecast (first row) and

analysis (third row) fields for the 24-h period that

began at 0000 UTC 19 January 2010 and will be

used as an example throughout the article. For the

quantitative verification of the results obtained with

the different postprocessing approaches, we cross-

validate the 12 years of forecast and observation

data, that is, we withhold one year at a time, fit the

different models to the remaining 11 years’ worth of

data, validate the postprocessed forecast with the

withheld year of independent data, and cycle through

all years so that at the end 12 years’ worth of out-of-sample

verification cases are available. Since there is barely any
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precipitation over this region in summer, verification is

restricted to the months from October to May.

3. Statistical postprocessing methodologies

a. Univariate postprocessing

The first step in the proposed statistical postprocessing

of ensemble precipitation forecasts consists of obtaining

reliable, univariate forecast distributions for each analysis

grid point and each lead time period. Here, we use a

variant of the approach by Scheuerer and Hamill (2015)

of fitting a nonhomogeneous, nonlinear regression model

to training observations and statistics of the ensemble

forecasts, using censored, shifted Gamma distributions

(CSGDs). First, we fit a climatological CSGD to the an-

alyzed precipitation amounts at each finescale grid point;

the resulting mean, standard deviation, and shift param-

eters mcl, scl, and dcl are used later in the regression

equations that determine the predictive CSGD parame-

ters. The predictors used in these equations are statistics

that summarize information in the (lower resolution)

raw ensemble: the ensemble probability of precipitation

POPf , the ensemble mean f , and the ensemble mean

absolute differenceMDf , which is a measure of ensemble

dispersion. These statistics are calculated over an aug-

mented ensemble that also comprises ensemble forecast at

all forecast grid pointswithin a certain neighborhoodof the

analysis grid point of interest. The size of this neighbor-

hood and the relative weight assigned to each forecast grid

point within the neighborhood is determined as described

in section 3.2 of Scheuerer et al. (2017), using a data-driven

weighting scheme that emphasizes forecast grid pointswith

better predictive skill for the analysis grid point under

consideration. Since the neighborhood may comprise

forecast grid points with different climatologies, the asso-

ciated forecasts need to behomogenized before calculating

weighted means and weighted mean absolute differences.

In this study, we do so by dividing each forecast by the

climatological forecast mean at the respective grid point,

thus replacing the ensemble forecasts by multiplicative

forecast anomalies. This is much simpler but proved to be

almost as effective in this application as the more complex

quantile mapping procedure suggested by Scheuerer and

Hamill (2015). The ensemble statistics POPf , f , and MDf

calculated from these (dimensionless) anomalies are re-

lated to the mean m and standard deviation s parameters

of the predictive CSGD via

m5
m
cl
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1
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1
)(a

2
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FIG. 1. (top) GEFS ensemble mean for forecast lead times 48–54 h, 54–60 h, 60–66 h, and 66–72 h, initialized at 0000 UTC

17 Jan 2010, (middle) predictive mean fields of the corresponding postprocessed forecast distributions, and (bottom) verifying

analysis fields.
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where log1p(x)5 log(11 x), and expm1(x)5 exp(x)2 1.

The shift parameter d is fixed at its climatological

value dcl. The regression parameters are then chosen

such that the continuous ranked probability score

(CRPS) obtained by applying these regression equa-

tions to a training dataset is minimized. For details

about model fitting and a motivation of these equations,

we refer to Scheuerer and Hamill (2015). A separate

set of model parameters is fitted for each analysis

grid point and each month, using data from 645 days

around the fifteenth of the respective month in the 11

years set aside for training (see section 2).

We note that for what follows, any other univariate

postprocessing method that yields full predictive dis-

tributions could have been used. The results in

Scheuerer and Hamill (2015) and Zhang et al. (2017),

however, suggest that the CSGD approach compares

favorably with other established postprocessing methods

and is therefore a good choice. In the following sub-

sections, we just assume that for each analysis grid point

and each of the four 6-h-lead-time periods a calibrated,

predictive distribution has been obtained by some uni-

variate postprocessing method capable of correcting

conditional biases (e.g., too many light and too few

heavy precipitation events) of the raw ensemble fore-

casts and ensuring adequate representation of the

prediction uncertainty. By calibrating the raw en-

semble forecasts against the high-resolution analyzed

data, the univariate postprocessing also adds spatial

detail as can be seen by comparing the first two rows of

Fig. 1.

b. Schaake shuffle

As a first reference approach to reconstructing the

space–time variability of precipitation forecast fields we

consider the Schaake shuffle (Clark et al. 2004; Schaake

et al. 2007), which is widely used in the hydrology lit-

erature. At each grid point, this technique is applied to a

sample of size K of the respective predictive distribu-

tion. To allow a direct comparison with the ECC-Q

(where the ‘‘Q’’ stands for ‘‘quantiles’’) technique dis-

cussed below, which requires that K is equal to the

number of raw ensemble members, we choose K5 11.

We sample the predictive distribution systematically

by taking a particular set of quantiles. This ensures

that a sample of that small size represents the cali-

brated forecast distribution sufficiently well and has

been demonstrated to improve forecast quality com-

pared to a random sample (Schefzik et al. 2013; Wilks

2015). Specifically, we use equidistant quantiles with

levels tk 5 (k2 0:5)/K, k5 1, . . . , K, a choice that is

optimal with respect to the continuous ranked proba-

bility score (Bröcker 2012).

The Schaake shuffle is based on the idea that spatial

and temporal variations in the rank-order statistics of

historic analysis fields can be used to determine the

space–time structure of the calibrated forecast ensemble

that we aim to construct. The original approach de-

scribed by Clark et al. (2004) uses the historic fields at

randomly selected dates within 7 days before and after

the forecast date. In the cross-validation setting used in

section 4, dates can be pulled from all years between

2002 and 2013 except for the year of the forecast, and

since we needK5 11 dates, we simply use the forecast

date in those 11 years (i.e., no random selection from a

larger time window). We refer to this purely date-

dependent selection of historic fields as the standard

Schaake shuffle (StSS) implementation. For each anal-

ysis grid point and each time period, the ‘‘shuffling’’

procedure now analyzes the rank order of the values

of this ensemble of historic analysis fields and reorders

the predictive sample in the exact same way. The re-

sulting StSS ensemble then represents the marginal

distributions obtained through univariate postprocess-

ing and has the same rank correlations as the en-

semble of historic analyses.

A major limitation of the standard implementation of

the Schaake shuffle is that the historic ensemble that is

used to generate rank orderings is unrelated to the an-

ticipated weather situation. Therefore, rank correlation

structures from a historic ensemble with light or mod-

erate precipitation may be imposed on predictive sam-

ples that represent a situation with much heavier

forecast precipitation. Even worse, for each analysis grid

point and each forecast lead time the sample that rep-

resents the marginal distribution of a historic ensemble

selected ad hoc usually contains a number n0 . 0 of

values with zero precipitation; these values provide no

useful reordering information. If most or all values of

the predictive sample are positive, the usual practice is

then to order the smallest n0 values at random, in-

dependently grid point by grid point, and independently

for each lead time. The detrimental effects of this

practice have been thoroughly discussed by Bellier et al.

(2017a). They can also be seen in Fig. 2, which depicts

the wettest member of the StSS ensemble for the 24-h

period beginning at 0000 UTC 19 January 2010, and the

corresponding historic analysis fields to which the values

of the predictive samples were matched. Even though

this is overall the wettest member, there are some areas

in the historic field with zero precipitation. At grid

points in those dry areas the smaller values of the pre-

dictive sample were ordered at random, independently

at each finescale grid point. This produced unrealistic,

noisy-looking patches in the StSS field. These patches

are even larger and more frequent for the drier StSS
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members (see online supplement A). During the third

lead time period, 60–66h, we also see an example where

rank orderings in an area with light precipitation are

imposed on values of the predictive sample that repre-

sent rather heavy precipitation. The values of the his-

toric field in the southwestern part of the domain are

positive but very small (the lowest precipitation cate-

gory on our color scale ranges from 0 to 1.4mm). Since

almost all other historic fields had no precipitation in

that area, however, these small values still assume the

highest rank in the historic ensemble, and are therefore

mapped to precipitation amounts of up to 70mm. Fi-

nally, we note some discontinuities in the central part of

the map as a result of the transition from the highest to

the second-highest value of the respective predictive

samples.

c. Minimum divergence Schaake shuffle and
quantile reordering

To address the shortcomings of the StSS discussed

above, several recent publications (Schefzik 2016;

Scheuerer et al. 2017; Bellier et al. 2017a) have pro-

posed different algorithms that make a forecast-

informed selection of the historic cases used in

the Schaake shuffle, with the goal of making the

rank correlations inherited from the historic fields

more flow dependent. Theminimum-divergence Schaake

shuffle (MDSS) method by Scheuerer et al. (2017) ach-

ieves this by choosing a set H of historic dates such that

the marginal distributions of the corresponding observa-

tions closely match those of the predictive distributions

across all locations (here, analysis grid points) and all

forecast lead times. Specifically, denoting by Ff
st the cu-

mulative distribution function (CDF) of the calibrated

predictive distribution at location s and lead time t, and by

FH
st the empirical CDF defined by the values of the his-

toric analysis fields corresponding to the dates in H , we

seek to minimize the sum DH
tot 5�s,tD

H
st over all

divergences

DH
st 5

ð�
FH
st (x)2Ff

st(x)
�2
dx .

If the calibrated predictive distributions suggest that

above-average precipitation amounts must be ex-

pected, the MDSS algorithm selects an ensemble of

historic cases with above-average analyzed precipitation

amounts. Conversely, if dry conditions are antici-

pated, similarity of F
f
st and FH

st implies that H con-

tainsmostly historic cases with below-average precipitation

amounts. In the Scheuerer et al. (2017) setup, up to seven

locations and 60 lead time periods were considered, so the

FIG. 2. (top) Historic analyzed fields corresponding to the 24-h period beginning at 0000 UTC 19 Jan 2006, (middle) ranks of the values

of these historic fields among all 11 historic fields at each grid point and each lead time period, and (bottom) StSS forecast fields obtained

by selecting the value of the predictive sample corresponding to this rank.
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dimension of the multivariate forecast distribution for

precipitation was at most 420. In the present setup, we only

consider four lead timeperiods but 3262 analysis grid points

simultaneously; the resulting dimension of 13048 is not

only computationally infeasible with the original MDSS

algorithm, but with only 11 years’ worth of analysis data, it

might also be challenging to find historic cases where the

marginal distributions closely match those of the predictive

distributions across all dimensions.

Therefore, in addition to performing univariate post-

processing for each of the 3262 analysis grid points, we

upscale all analysis fields to the coarser resolution of the

forecast grid by averaging their values over all finescale

grid points associated with each forecast grid cell, and

we perform univariate postprocessing also on the coarse

grid. In our example, the spatial dimension thereby re-

duces from 3262 to 11 (the number of forecast grid cells

overlapping the domain, see first row in Fig. 1). The

coarse-scale predictive distributions represent a proba-

bilistic forecast of the average precipitation amount over

each forecast grid cellm and each lead time period t. The

MDSS algorithm is run with these 11 3 4 univariate

predictive distributions and upscaled historic analyses

and selects K among the historic candidate dates (here

we use 645 days around the fifteenth of the respective

month 3 11 training years) in such a way that the

associated set of upscaled analysis fields have marginal

distributions that resemble the coarse-scale predictive

distributions. Once these dates have been selected, the

algorithm proceeds in the same way as the standard

Schaake shuffle: at each analysis grid point, the ranks of

the values of the historic ensemble of analyzed fields

at the selected dates are determined, and the sample

from the calibrated, predictive distribution at this grid

point is reordered in the same way as the historic

ensemble values. We refer to this implementation as

MDSS-RObecause, unlike the alternative implementation

suggested in the subsequent subsection, the implementa-

tion described above is purely based on sample reordering.

Figure 3 shows the wettest of the 11 MDSS-RO ensemble

members (see online supplement B for the full set of

MDSS-RO ensemble members) for the same forecast

period for which the StSS ensemble field was depicted.

Since the historic cases were selected such as to be in line

with anticipated precipitation amounts, the spatiotemporal

structure of each member of the MDSS-RO ensemble is

very similar to that of the associated historic fields; large

distortions of the structure that can occur with StSS are

avoided. The issue of random assignment of ranks

when several values of the historic ensemble are

zero is strongly reduced in wetter-than-average situations.

However, it is exacerbated in dry situations, where the

FIG. 3. (top) Historic analyzed fields associated with MDSS member 11, (middle) ranks of the values of these historic fields among all

11 historic fields at each grid point and each lead time period, and (bottom)MDSS-RO forecast fields obtained by selecting the value of the

predictive sample corresponding to this rank.
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values of the historic fields are actually more likely to be

zero if the dates are chosen by the MDSS algorithm, as

the verification in section 4 will show. Moreover, the

MDSS-RO fields still have noticeable discontinuities at

the locations where the ranks of the historic ensemble

members change. In the following subsection, we there-

fore propose an alternative way of using the historic fields

selected by the MDSS algorithm that addresses both the

randomization and the discontinuity issue, thus yielding

physically more realistic forecast fields.

d. Minimum divergence Schaake shuffle and
spatial disaggregation

The MDSS-RO method discussed above uses the en-

semble of historic analysis fields selected by the MDSS

algorithm to reorder samples of the predictive distribu-

tions at the analysis grid scale. Alternatively, one can use

the historic fields to spatially disaggregate forecasts of

coarse-scale precipitation amounts to the finescale, and

this approach is described in the following. In addition to

the benefits discussed later, this MDSS-SDA (spatial

disaggregation) implementation is computationally more

efficient since it requires univariate postprocessing to be

performed only at the forecast grid scale. As in section 3c,

the MDSS algorithm is used to select K historic dates

such that the associated set of upscaled analysis fields

has marginal distributions that resemble the 11 3 4

coarse-scale predictive distributions. Systematic samples

[quantiles with levels (k2 0:5)/K, k5 1, . . . , K] of these

distributions are calculated, and the reordering of the

sample at each forecast grid cell and each lead time

yields calibrated coarse-scale precipitation forecast fields

x(k), k5 1, . . . , K, with appropriate covariability be-

tween the 11 coarse-scale grid cells on the one hand and

the four lead time periods on the other hand (see first

two rows in Fig. 4). The next step is to disaggregate these

coarse-scale fields, separately for each t, to the fine-

resolution analysis grid, and we do so by using the fine-

scale structure of the historic analysis fields

h(k), k5 1, . . . , K selected by the MDSS algorithm

(fourth row in Fig. 4). By construction, their upscaled

versions have similar precipitation amounts as the re-

ordered predictive samples. With a limited record of

analyzed fields, however, we cannot expect a perfect

agreement. If the values of the sample from the pre-

dictive distribution are relatively large, for example, the

values of the historic ensemble are typically lower. We

therefore aim to construct, for each member k, a spa-

tially smooth, multiplicative adjustment function h(k)

(third row in Fig. 4) that can be used to define an ad-

justed field ~h
(k)
t :5h(k)h

(k)
t (fifth row in Fig. 4) such that

the upscaled version of ~h
(k)
t matches the coarse-scale

field x(k).

Let M be the number of forecast grid cells covering

the domain of interest (in our study M5 11), and de-

note by ym the upscaling functional that maps a fine-

scale field to the gridcell average corresponding to

forecast grid point m. Then the requirement that the

upscaled version of ~h
(k)
t must match the coarse-scale

MDSS forecast field for each forecast grid cell m can

formally be written as

y
m
(h(k)h

(k)
t )5 x

(k)
mt , m5 1, . . . ,M . (1)

To construct a smooth function h(k) such that these M

conditions are fulfilled, we make an ansatz that is com-

mon in spatial interpolation and define h(k) as a linear

combination of a set of nonnegative, basis functions

u1, . . . , uM:

h(k) 5 �
M

m051

a
km0um0 . (2)

A visualization of our particular choice ofu1, . . . , uM is

given in Fig. 5, technical details are provided in ap-

pendix A. This choice is somewhat ad hoc and by no

means the only option. It was guided by the following

considerations:

d the basis functions should be sufficiently smooth in

order for h(k) to be smooth,
d each um0 should be compactly supported (i.e., zero

outside its support radius) in order to allow ad-

justments that are focused on forecast grid cell

m0, and
d the support radius should be large enough to avoid the

creation of features in ~h
(k)
t resulting from bumps in h(k)

rather than features in h(k).

The conditions in (1) and the representation ofh(k) in (2)

lead to the linear equation system

�
M

m051

a
km0ym(um0h

(k)
t )5 x

(k)
mt , m5 1, . . . ,M , (3)

which could, in principle, be solved for the co-

efficients ak1, . . . , akM. To ensure that the multi-

plicative adjustment function h(k) is nonnegative,

however, we must require that all akm0 are non-

negative. Moreover, if coefficients associated with

adjacent basis functions in Fig. 5 differ considerably,

this would entail sharp gradients in h(k) and thus

large distortions of the adjusted field ~h
(k)
t , so we

would like adjacent coefficients to be as similar as

possible. Instead of solving the equation system (3),

we therefore choose ak1, . . . , akM as the minimizers

of the function
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T(a
k1
, . . . ,a

kM
)5 �

M

m51

"
�
M

m051

a
km0ym(um0h

(k)
t )2 x

(k)
mt

#2

1 l �
M

m51

 
a
km

2
1

n
m

�
m02Nm

a
km0

!2

,

where Nm is the set of forecast grid points adjacent to

grid pointm, and nm is the size of this set. The first term

of the minimization target T is zero if the equation sys-

tem (3) is solved exactly and increases with increasing

difference between the upscaled version of ~h
(k)
t and x(k).

The second term is the sum of squared differences be-

tween each akm and the average over its neighbors, and

therefore penalizes volatility of h(k). The degree of pe-

nalization is controlled by the parameter l, which in this

study was chosen to be l5 0:25. In our setup, this value

provides a good trade-off between the smoothness of

h(k) and the quality of the representation of the cali-

brated predictive distributions, which degrades as the

first term of T is de-emphasized. The judgement of

FIG. 4. Historic analyzed fields associated with MDSS member 11, (first row) upscaled and (fourth row) original; (second row) coarse-

scale MDSS fields obtained by selecting, at each forecast grid point and each lead time period, the value of the coarse-scale predictive

sample corresponding to the rank of the upscaled historic fields; (third row) adjustment functions with which the historic fields are

multiplied at each lead time; and (fifth row) resulting high-resolution MDSS-SDA forecast field.
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whether h(k) is sufficiently smooth and the resulting ad-

justed field is realistic is rather subjective. It is therefore

difficult to determine l in an objective way unless a veri-

fication metric can be found which quantifies the physical

consistency of the postprocessed precipitation forecast

fields.Minimization ofT is performed under the constraint

that all coefficients are nonnegative, which can be done, for

example, by using the limited-memoryBroyden–Fletcher–

Goldfarb–Shanno for bound constraints (L-BFGS-B) al-

gorithm (Byrd et al. 1995) implemented in R. Calculating

ak1, . . . , akM in this way does not guarantee that the up-

scaled version of ~h
(k)
t matches x(k) exactly, but we usually

get a very good approximation of it while enforcing a

reasonably smooth adjustment function h(k) and thereby

an adjusted field ~h
(k)
t that is physically more realistic. The

full set of MDSS-SDA ensemble members constructed

in the setup of our case study is provided in online

supplement C.

e. Ensemble copula coupling

All of the Schaake shuffle variants discussed above

use an ensemble of historic analysis fields to reconstruct

the space–time variability of postprocessed forecast

fields. Alternatively, their spatiotemporal structure can

be modeled after the raw ensemble forecasts (Roulin

and Vannitsem 2012; Schefzik et al. 2013; Flowerdew

2014), and this approach has been referred to as

ensemble copula coupling. In the present case where the

grid spacing of the raw ensemble is much coarser than

that of the analysis against which it is calibrated, subgrid-

scale variability in in the spatiotemporal structure

will not be represented as well as in an analysis-based

modeling approach (if this small-scale variability in the

analysis is trustworthy). Space–time variability at the

forecast grid scale, however, should be represented well

since the raw ensemble is based on a physical model.

As with the StSS approach, we start by generating a full

predictive distribution at each analysis grid point and

each forecast lead time, and sample this distribution

by calculating the quantiles with levels tk 5 (k2 0:5)/K,

k5 1, . . . , K. Schefzik et al. (2013) refer to this particular

implementation as ECC-Q, and note that it has better

sampling properties than ECC-R, which is based on a

random sample. The sample size K must be equal to the

number of raw ensemble members, which in the present

setup means K5 11. The next step of ECC-Q is again

similar to the StSSmethod: at each analysis grid point and

each lead time the predictive sample is reordered in the

same way as the raw ensemble values. For this purpose,

the raw ensemble forecast fields are bilinearly inter-

polated to the analysis grid. Akin to StSS, it is possible

that a number n0 . 0 of the raw ensemble forecast values

are zero, and thus do not provide any information on the

rank order. Resolving these ties at random can result in

FIG. 5. Basis functions u1, . . . , u11 used in (2). The plot in the lower-left corner depicts the tricube kernel used to construct these basis

functions (see appendix A for details).
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noisy-looking patches in the ECC-Q forecast fields simi-

lar to those noted above in Fig. 2. In contrast to StSS,

however, the conditions under which this tends to hap-

pen are reversed. For StSS, the number n0 of ensemble

members for which no ordering information is available is

approximately K times the climatological probability of

zero precipitation, since the historic analysis fields are

selected unconditionally. In moist forecast situations like

the one in our case study, the number of nonzero values in

the predictive sample is typically larger thann0, and this is

therefore the situation where random reordering occurs

most often. For ECC-Q, on the contrary, a large number

of nonzero values in the (calibrated) predictive sample

usually goes along with a large number of nonzero raw

ensemble members, and so random reordering rarely

occurs in moist forecast situations. It is common though

in dry forecast situations, when the raw ensemble is

overconfident and all or almost all members forecasts are

zero, but one or two values of the predictive sample are

nonzero. This case does not occur for our example fore-

cast date, but we will see some effects of this random

reordering in dry situations in section 4.

Figure 6 shows the interpolated forecast fields corre-

sponding to GEFS member 2 (which resulted in the

wettest ECC-Q ensemblemember), the associated ranks,

and the resulting ECC-Q forecast fields. The inter-

polated GEFS forecasts (first row) do not provide any

information on subgrid-scale variability; the subgrid-

scale features in the plots result from the univariate

postprocessing, which implicitly accounts for climato-

logical differences at the subgrid scale. Figure 6 reveals

another flaw in the ECC-Q forecast fields (third row,

especially for lead time 54–60 h): a number of disconti-

nuities can occur where two of the interpolated raw

ensemble members intersect and change their rank or-

der within the ensemble. While the predictive distribu-

tions—and thus their quantiles—are continuous over

the domain, the integer-valued rank fields (third row in

FIG. 6. (first row)Original and (second row) interpolatedGEFSmember 2 of the ensemble forecast initialized at 0000UTC 17 Jan 2010,

(third row) associated rank at each analysis grid point and each lead time period, and (fourth row) ECC-Q forecast fields obtained by

selecting the value of the predictive sample corresponding to this rank.
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Fig. 6) are discontinuous. Any change of ranks entails

jumping from a lower to a higher (or vice versa) quan-

tile, and this is what causes the physically unrealistic

appearance of some of the ECC-Q forecast fields

(see online supplement D for all 11 ECC-Q ensemble

members). If the ensemble size was larger, the differ-

ences between the values of the predictive samples

would be smaller and the jumps would be less apparent,

but they would never disappear entirely since the

quantile fields never intersect, and so changing from one

quantile field to another inevitably entails a disconti-

nuity of the ECC-Q ensemble fields.

Schefzik et al. (2013) discuss a third variant, ECC-T

(where the ‘‘T’’ stands for ‘‘transformations’’), in addi-

tion to ECC-Q and ECC-R. Instead of reordering

quantiles or random samples, ECC-T uses a quantile-

mapping procedure that constructs—separately for each

analysis grid point and each lead time—a function that

maps the values of the raw ensemble to values that

represent the calibrated predictive distribution. This

is achieved by fitting a parametric distribution to the

(interpolated) raw ensemble forecasts and using the

inverse CDF of this distribution to define the quantile

levels at which the predictive distribution is evaluated, in

contrast to ECC-Q, where fixed quantile levels are se-

lected at each grid point. The disadvantage of this pro-

cedure is that the ECC-T quantile levels typically result

in a less optimal representation of the predictive distri-

bution. Its major benefit is that similar values of the raw

ensemble are mapped to similar values of the calibrated

ensemble, and this would potentially avoid the discon-

tinuities seen in Fig. 6. The particular implementation

proposed by Schefzik et al. (2013), however, poses

significant challenges in the setup studied here, since

a sufficiently flexible, parametric distribution would

have to be fitted to the forecast values of only 11 raw

ensemble members, and in a lot of cases most or all of

these values are zero. Under these circumstances, an

adequate fit is not guaranteed. A recent paper by

Bellier et al. (2018) compares a variant of ECC-T with

alternative approaches like trajectory smoothing in the

context of multivariate hydrological postprocessing

where similar challenges (ties in the raw ensemble

forecasts, discontinuities) arise and concludes that the

ECC-T trajectories are not competitive, even though

the ensemble size in their setup is much larger (K5 51).

In the subsequent section, we propose a variant of

ECC-Q that makes two modifications and combines

the idea of reordering a quantile-based sample with

the ECC-T idea of constructing a mapping function

that maps the values of the interpolated raw ensemble

forecasts to a sample of calibrated forecasts. Unlike

ECC-T, however, our approach is capable of dealing

with the challenges that come with a small ensemble size

and the complex nature of the distribution of ensemble

forecasts for precipitation.

f. Modifications to ECC-Q

We propose two modifications to the ECC-Q tech-

nique that address the shortcomings mentioned above.

The first one addresses the issue of random reordering of

predictive samples when several members of the raw

ensemble predict zero precipitation by simulating

‘‘negative precipitation.’’ For each member k, let Sk be

the set of forecast grid points where this member pre-

dicts zero precipitation. To permit bilinear interpolation

of the modified ensembles, we consider forecast grid

points over an area that extends slightly beyond the

boundaries of the domain of study, so that the number of

grid points considered is now ~M.M. Spatial correla-

tions between different forecast grid points are modeled

through basis functions ~um, which are constructed in the

sameway as those described in section 3d and appendixA,

except that we now consider the extended set of forecast

grid points and choose the support radius r to be 3 times

the forecast grid spacing, that is, ;1.58. This means that

the spatial correlations of our simulated negative pre-

cipitation are zero beyond a distance of approximately

150 km. This choice is ad hoc and could certainly be

optimized or made more weather dependent, but such

improvements are not straightforward and are beyond

the scope of this paper. The simulation now proceeds as

follows:

1) define coefficients «1, . . . , « ~M by simulating «m from

a uniform distribution U [21,0] for all m 2 Sk and

setting «m 5 0 otherwise;

2) define the negative precipitation field ~x(k) :5

�
~M

m51«m~um;

3) at each forecast grid point where the value of the raw

ensemble member k is zero, replace it by the value of

~x(k) at this grid point; and

4) bilinearly interpolate the resulting modified raw

ensemble forecasts to the analysis grid.

The resulting modified interpolated raw ensemble mem-

bers nowhave spatially correlated, negative values instead

of zeros and thereby avoid the randomization entailed by

tied ranks in the ECC-Q reordering procedure. The spa-

tial correlations implied by the basis functions ~u1, . . . , ~uM

are not based on any statistical or physical model, but the

results in section 4 show that they are more appropriate

than the spatial independence assumption entailed by

randomization of tied ranks.

Consider now a fixed analysis grid point and lead time

at which the ECC-Q procedure is applied. Denote by

z1, . . . , zK the values of the interpolated raw ensemble
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forecasts and by ~z1, . . . , ~zK the ECC-Q ensemble ob-

tained by reordering the sample [quantiles with levels

tk 5 (k2 0:5)/K, k5 1, . . . , K] that represents the cali-

brated predictive distribution. If we look at the ECC-Q

ensemble from an ECC-T perspective, we can consider

the reordering the result of a mapping ~c : zk 1 ~zk for

k5 1, . . . , K. Unlike the ECC-T quantile mapping

procedure which implies that two interpolated raw en-

semble members with similar values are mapped to two

ECC-Q ensemble members which have again similar

values, the ECC-Q mapping function ~c is discontinuous

as illustrated in Fig. 7 for two analysis grid points in an

area where the values of two interpolated raw ensemble

fields (2 and 6) intersect. Since these grid points are

adjacent, the values of predictive sample (black di-

amonds) are very similar. The values of the interpolated

raw ensemble fields at these two grid points are also very

similar, but at one of them the value of member 2 is

slightly larger and at the other one the value of member 6

is slightly larger. As a result, the ECC-Q member 2 fore-

cast field abruptly jumps from the highest to the second-

highest sample value and thereby creates a discontinuity.

To fix this, we propose a way of constructing a modified

mapping function ĉ : zk 1 ẑk, k5 1, . . . , K such that

d for each k, ĉ(zk)’ ~zk as far as possible, while
d ĉ does not have steep gradients, that is, if zk ’ zk0 then
ẑk ’ ẑk0.

The first point is desirable because ~z1, . . . , ~zK is a CRPS-

optimal sample, and we would like to preserve this

property as much as possible. On the other hand, we

have to modify the sample values somewhat to achieve

continuity of ĉ as a mapping function because this in

turn warrants spatial continuity of the calibrated en-

semble forecast fields. This is achieved by defining ĉ as

a linear regression spline that is fitted to the ECC-Q

point pairs (z1, ~z1), . . . , (zK, ~zK) while discouraging

steep gradients of this spline. If the values ~z1, . . . , ~zK are

all zero, we can simply set ĉ[ 0. If only one value ~zk is

nonzero, we set ĉ(zk)5 ~zk and ĉ(zj)5 0 for all j 6¼ k.

Otherwise, let p be the permutation of indices such that

zp(1) , � � �, zp(K) and let ~n0 be the number of zeros in

~z1, . . . , ~zK. If all ~zk are nonzero, we set ~n0 5 1 (this

is necessary for the spline to be well defined). We

now define ĉ as a linear regression spline with knots

zp(n011), . . . , zp(K21):

ĉ z;g
0
, . . . ,g

K2~n0

� �
5 g

0
1g

1
z1 �

K21

j5~n011

g
j2~n011

z2 z
p(j)

� �
1
,

(4)

where (�)1 5max(�, 0). The first two terms of ĉ define a

standard linear regression function while the additional

terms allow the slope of the fitted curve to increase or

decrease at every knot. The regression coefficients

g0, . . . , gK2~n0
are determined by minimizing

T̂ g
0
, . . . , g

K2~n0

� �
5 �

K

k5~n0

ĉ z
p(k)

;g
0
, . . . , g

K2~n0

� �
2 ~z

p(k)

h i2

1 l̂ �
K21

k5~n011

max(~z
p(k)

, 1)g2
k2~n011.

(5)

The first sum in (5) measures the accuracy of the ap-

proximation ĉ(zk)’ ~zk. If l̂5 0, coefficients can be

found such that the approximation is exact, and the

resulting mapping function ĉ would entail the same

mapping as the ECC-Q approach. For l̂. 0, the second

sum in (5) penalizes large values of the coefficients

g2, . . . , gK2~n0
, and thereby discourages large changes in

the slope of ĉ. The penalty for coefficient gk2~n011 in-

creases as ~zp(k) increases to account for the fact that

larger values of ~zp(k) typically go along with larger

approximation errors c(zp(k); g0, . . . , gK2~n0
)2 ~zp(k), and

therefore a larger penalty is required to balance that.

FIG. 7. (left) Example of an ECC-Q forecast field with discontinuities and (center),(right) illustration of the ECC-mQ-SNP mapping

function (red curves) at two adjacent analysis grid points (red diamonds in the left plot). The numbers in black denote the respective

ensemble member.
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Figure 7 illustrates the regularization effect of the map-

ping ĉ constructed as described above. It is clear that a

linear mapping would not be able to approximate the

ECC-Q point pairs sufficiently well and would therefore

result in inferior sampling of the predictive distribution.

The regularized linear regression spline ĉ, on the con-

trary, follows these point pairs closely except for the pairs

corresponding to z2 and z6, which are so close together

that an accurate fit would entail a steep increase of the

slope of ĉ. The regularization results in values ẑ2 and ẑ6
that are also close together, which degrades the sampling

of the predictive distribution (red diamonds) but elimi-

nates the discontinuities near grid points where the

ranking of two interpolated raw ensemble members

changes. In other words, by controlling the gradients of

the pointwise mapping function ĉ at each analysis grid

point we achieve spatial continuity of the mapping.

The choice of the regularization parameter l̂ is again

subjective, since it trades off closeness to the CRPS-

optimal ECC-Q sampling of the predictive marginal

distributions (which can be quantified objectively)

with a reduction in unrealistic, steep gradients in the

resulting calibrated ensemble forecast fields (which at

present we can only assess subjectively). In this study, we

used l̂5 0:5, which resulted in sufficiently smooth en-

semble forecast fields (see Fig. 8) while retaining the

good sampling properties of ECC-Q (see section 4).

Unlike any form of spatial smoothing, the approach

described above notably modifies the ECC-Q forecast

fields only in the vicinity of intersections of the in-

terpolated raw ensemble fields which avoids the blurring

of spatial detail. Since the two major changes in relation

to ECC-Q are 1) the simulation of negative precipitation

at forecast grid points where the raw ensemble forecasts

are zero and 2) the modification of the predictive

quantiles used by ECC-Q, we refer to this extension as

ECC-mQ-SNP. For the practical implementation of

the quantile modification via regularized linear spline

FIG. 8. (first row)Original and (second row) interpolatedGEFSmember 2 of the ensemble forecast initialized at 0000UTC 17 Jan 2010,

(third row) associated rank at each analysis grid point and each lead time period, and (fourth row) ECC-mQ-SNP forecast fields obtained

by selecting the modified value of the predictive sample corresponding to this rank.
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regression, we note that the minimization in (5) is un-

constrained, and the coefficients can therefore be found

as the solution of a linear equation system. This tech-

nical detail is explained in appendix B.

4. Verification

Table 1 provides a summary of the key features of the

different methods discussed above. Figures 2, 3, 4, 6, and

8 suggest that the ensembles of high-resolution pre-

cipitation fields generated by the MDSS-SDA or the

ECC-mQ-SNP approach are physically more realistic

than those generated by the StSS,MDSS-RO, or ECC-Q.

Here, we study how far this translates into better per-

formance of the resulting probabilistic forecasts.

A disadvantage of theMDSS-SDA and ECC-mQ-SNP

ensembles pointed out above is that their values at each

analysis grid point are not an optimal representation of

the respective predictive distribution. TheECC-mQ-SNP

ensemble deviates from the optimal sample due to the

regression spline regularization while the MDSS-SDA

algorithm generates an optimal sample at the forecast

grid scale but introduces additional variability to the

finescale samples during the disaggregation step. How

strong is the degradation in marginal skill compared to

StSS, MDSS-RO, and ECC-Q, which are all based on

the same, CRPS-optimal samples? To answer this we

calculate, separately for each month, CRPS skill scores

relative to a climatological ensemble composed of all

analyzed values (i.e., over all verification years and days

within that month) at the respective analysis grid point

and lead time. The results in Table 2 show that the

marginal skill drops by about 0.01 for ECC-mQ-SNP

and slightly more for MDSS-SDA. This loss in mar-

ginal forecast skill is not negligible, but it is still rather

moderate and can be expected to be even smaller for

larger ensembles. It is the price that one needs to be

willing to pay for the improved spatial properties of the

ensembles obtained with these methods.

In the light of the different impacts of zeros in the his-

toric analysis ensembles or interpolated raw NWP en-

sembles onwhich the differentmultivariate postprocessing

methods are based, verification metrics that allow one to

study weather regimes with light and heavy precipitation

separately aremore adequate. Sample stratification comes

with a number of serious caveats (Siegert et al. 2012; Lerch

et al. 2017; Bellier et al. 2017b), and we therefore prefer

the alternative verification strategy of studying exceed-

ances of low, intermediate, and high thresholds; that is, we

turn the analysis and ensemble forecast fields into binary

fields that have the value one if the precipitation amount at

this time/location exceeds the threshold, and zero other-

wise. Working with binary exceedance fields is common

practice in spatial forecast verification (Gilleland et al.

2009), but most of the established spatial verification

methods are targeted at deterministic forecasts and are not

suitable for assessing the quality of the uncertainty rep-

resentation by (calibrated) ensemble precipitation fore-

casts. Here, we study a particular quantity that is relevant

in practice and highlights the limitations of some of the

multivariate postprocessing methods discussed in section

3: the fraction of all analysis grid points within the domain

at which the threshold is exceeded. Roberts and Lean

(2008) use a similar idea for short-range deterministic

forecasts and examine at which spatial scale the predicted

fraction of exceedance becomes skillful. Dey et al. (2016)

extend this concept to ensembles and study spatial scales

over which ensemble forecasts agree. In the present setup

we are more interested in whether the different calibrated

ensembles adequately represent the forecast uncertainty,

TABLE 1. Summary of the key features of the different methods for generating ensembles of space–time precipitation fields discussed in

section 3.

Optimal

sampling

Represents small-scale

variability

Avoids random

reordering

Avoids

discontinuities

Suitable for large

domains

Flow-dependent

space–time variability

StSS ✓ ✓ ✓

MDSS-RO ✓ ✓ ✓

MDSS-SDA ✓ ✓ ✓ ✓

ECC-Q ✓ ✓ ✓

ECC-mQ-SNP ✓ ✓ ✓ ✓

TABLE 2. CRPSSs for the (marginal) predictive distributions at each analysis grid point, aggregated over the domain, the four lead time

periods, and all verification years.

Oct Nov Dec Jan Feb Mar Apr May

StSS/MDSS-RO/ECC-Q 0.342 0.249 0.295 0.259 0.299 0.276 0.268 0.300

MDSS-SDA 0.336 0.238 0.283 0.247 0.286 0.263 0.257 0.287

ECC-mQ-SNP 0.339 0.238 0.287 0.248 0.292 0.267 0.260 0.291
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and instead of a range of spatial scaleswe only consider the

entire forecast domain (i.e., all 3262 analysis grid points) at

each lead time and compare the fractions of threshold

exceedance (FTEs) of analyzed and ensemble forecast

fields. These FTEs can be used as a preranks in the sense of

Gneiting et al. (2008) andThorarinsdottir et al. (2016), that

is, as projections of a multivariate quantity onto a (posi-

tive) univariate quantity that can then be evaluated by an

ordinary rank histogram. If the postprocessed ensemble

forecast fields represent the forecast uncertainty about the

fraction of grid points within the domain that exceeds a

prespecified amount of precipitation adequately, then the

rank of the analysis FTE within the set consisting of

all (analysis and 11 ensemble member) FTEs should

assume any of the values 1, . . . , 12 with equal proba-

bility. If over the set of all verification cases (12 years 3
8 months3f28, . . . , 31g days3 4 lead times) some ranks

are assumed more often than others, this can be seen as an

indication for differences in the properties of the post-

processed ensemble fields and the verifying analysis fields.

In the present setup with rather short accumulation periods

and a domain in which there is no precipitation at all

during;40% of all days in January and;70%of all days

in May, it happens quite frequently that the FTE of the

analysis and/or several ensemble members is zero. If all

12 FTEs are zero, the respective case can be omitted

from the verification since it does not convey any in-

formation. If, however, at least one of the ensemble

FTEs is positive, this case does inform the FTE ranking

and must be used. Ties between a zero analysis FTE

and zero ensemble member FTEs are then resolved

at random.

Figure 9 shows the resulting FTE histograms for dif-

ferent threshold values. It is apparent that the StSS

precipitation forecast fields differ significantly from the

verifying analysis fields. The main problem is the ran-

dom reordering of univariate forecast samples already

discussed in connection with Fig. 2. This randomization

results in very low spread of the FTEs, especially among

the drier members, and this makes it rather likely that

the analysis FTE is smaller than all of the ensemble

FTEs. Wetter members are generally less affected by

random reordering, but there is still a noticeable de-

crease in the spread between wet member FTEs, which

results in an increased chance of the analysis FTE being

the largest. The MDSS-RO and ECC-Q ensembles are

also based on sample reordering, but the precipitation

fields that inform the reordering (systematically selected

analysis fields for MDSS-RO and interpolated raw en-

semble forecasts for ECC-Q) are flow dependent, and

hence in wet forecast situations there are always a suf-

ficient number of unrandomized ranks for reordering.

For the higher thresholds, the FTE histograms for

MDSS-RO and ECC-Q are therefore relatively flat. In

dry forecast situations, however, the flow dependence of

these methods results in more randomization as StSS,

because there is now an increased chance that there are

more ensemble members/selected historic fields with

zero precipitation than sample values from the mar-

ginal predictive distributions. As a result, some of the

MDSS-RO/ECC-Q ensemble members have nonzero

precipitation amounts at scattered analysis grid points

(e.g., MDSS-RO members 3, 5, and 6 in online supple-

ment B) and result in poor calibration at the 0.1-mm

threshold. The MDSS-SDA method avoids random re-

ordering at the analysis grid scale entirely. For the coarse-

scale fields (second row in Fig. 4) it can still occur that too

many values of the upscaled historic analysis fields

are zero. In this case the values of the corresponding

MDSS-SDA ensemble member are also zero at all

FIG. 9. Histograms of the rank of the analysis FTE within the joint sample of analysis and postprocessed ensemble FTEs for five different

threshold values: 0.1mm, 10mm, 25mm, the 99.5%, and the 99.9% climatological percentile at each grid point and each lead time.
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analysis grid points associated with this forecast grid cell,

even if the coarse-scale predictive sample value at this

grid cell suggests a small nonzero precipitation amount.

This explains the subtle dry bias of the MDSS-SDA

ensembles at the 0.1-mm threshold, but overall this ap-

proach yields the best representation of the FTE over

the domain. The ECC-mQ-SNP also avoids random

reordering by simulating negative precipitation at the

forecast grid scale and interpolating it (along with the

nonzero precipitation amounts from the raw ensemble

forecasts) to the analysis grid points. At the higher

thresholds, the FTE histograms look the same as for

ECC-Q, but the miscalibration of the ECC-Q ensembles

at the 0.1-mm threshold is largely rectified. There is still

some departure from a flat histogram, which is likely a

result of our ad hoc simulation procedure for the negative

precipitation amounts. This procedure seems to generally

capture the strength of spatial covariability, but it is un-

able to perfectly mimic the nature of real precipitation

fields. We leave the development of more sophisticated

and statistically principled simulation methods for future

research.

The FTE histograms in Fig. 9 are useful to diagnose

shortcomings of the different methods to generate en-

sembles of precipitation forecast fields, but they do not

permit a quantitative assessment of forecast perfor-

mance. This can be done though by comparing contin-

uous ranked probability skill scores (CRPSSs) of the

different calibrated ensemble FTEs relative to the FTEs

of a climatological ensemble. In addition to reliability,

this also assesses sharpness of the ensemble pre-

cipitation fields, that is, how well the ensemble FTEs are

concentrated around the analysis FTE. The results in

Table 3 confirm that StSS fares significantly worse than

the other methods across all thresholds. Interestingly,

we now see an advantage of the two MDSS methods

over the ECCmethods at the high thresholds, especially

for the threshold values relative to climatology, where

terrain-related spatial differences are largely removed.

This might be caused by the inability of ECC to account

for subgrid-scale variability, which causes the wettest

members to exceed a high precipitation threshold some-

what less often than the wettest MDSS-SDA members.

Another aspect of precipitation fields that is particularly

important for hydrological applications is that spatially and

temporally accumulated precipitation amounts are repre-

sented correctly. Comparisons of different multivariate

postprocessing techniques in that regard have been

performed, for example, by Scheuerer et al. (2017) and

Wu et al. (2018). Accumulations over space and time,

however, are more of a coarse-scale quantity, and in

the present setup it is therefore more interesting to

study genuine subgrid-scale aspects like the maximum

precipitation amount over a certain subdomain and a

certain time period. In practice, such a subdomain could

be some administrative unit for which severe weather

warnings such as a flash flood warning are issued. Here,

we use each GEFS grid cell as a subdomain, and we

study the maximum over all associated finescale grid

points and all four lead time periods. Asking whether

the observed spatiotemporal maximum exceeds 0.1mm

of precipitation is equivalent to asking whether there is

measurable precipitation anywhere within the sub-

domain during any of the four 6-h periods. Likewise,

when studying exceedance of 25mm, we are interested

if during any of the 6-h periods there is at least one

analysis grid point within the subdomain where an el-

evated amount of precipitation is reported. Studying

these subgrid maxima is also interesting because the

raw ensemble forecasts do not provide any subgrid-

scale information, and it is therefore not clear if ECC-

based downscaling can provide good forecasts of this

quantity.

Figure 10 shows Brier skill scores of subgrid-scale

maximum precipitation forecasts obtained with the four

different approaches where skill is again relative to cli-

matological forecasts. This time, however, climatologi-

cal exceedances are calculated with all analyzed fields

during a 91-day window centered over the middle of the

respective month in order to reduce the variability of

the estimated climatological frequencies of exceeding

the 25mm threshold. The scores reinforce the conclu-

sions obtained with the FTE-based metrics considered

above. The MDSS-SDA algorithm yields a significantly

better representation of subgrid-scale maximum pre-

cipitation than the StSS method and attains much better

skill scores at all thresholds. The poor performance of

StSS can again be explained by the randomization of

predictive samples when the associated historic cases

used for reordering are zero. The detrimental effects of

this common practice appear quite markedly here since

the distribution of the spatiotemporal maximum is

rather sensitive to the assumption of weak spatial de-

pendence entailed by the random reordering for a subset

of ensemble members and subsets of the spatial domain.

TABLE 3. CRPSSs for the fractions of threshold exceedance for

different thresholds, aggregated over the four lead time periods, all

months, and all verification years.

0.1mm 10mm 25mm

99.5%

climatology

99.9%

climatology

StSS 0.338 0.149 0.065 0.120 0.088

MDSS-RO 0.439 0.225 0.126 0.206 0.161

MDSS-SDA 0.478 0.225 0.126 0.207 0.160

ECC-Q 0.462 0.218 0.116 0.196 0.145

ECC-mQ-SNP 0.473 0.211 0.122 0.191 0.142
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The same cause explains the poor performance of the

MDSS-RO and the ECC-Q method at the 0.1-mm

threshold as discussed above in connection with the FTE

histograms. Interestingly, the two ECC methods perform

as well as MDSS-RO and MDSS-SDA at the higher

thresholds, which suggests that the ECC ensembles are

able to represent the predictive distribution of subgrid-

scale maxima quite well despite the lack of information

about subgrid-scale variability in the raw ensemble. The

discontinuities in the MDSS-RO and ECC-Q ensembles

noted in Figs. 3 and 6 do not seem to have a significant

negative effect on the distribution of subgrid-scale maxi-

mum precipitation amounts, but neither does the sub-

optimal sampling of MDSS-SDA and ECC-mQ-SNP;

results for all four methods are very similar at the higher

thresholds, and different verification metrics might have

to be devised to appreciate the more realistic appearance

of the MDSS-SDA and ECC-mQ-SNP ensemble pre-

cipitation fields.

5. Discussion

We have reviewed two established methods, the

Schaake shuffle (StSS) and ECC-Q, and the recently

proposed minimum divergence Schaake shuffle (MDSS)

for modeling space–time variability in postprocessed

ensemble precipitation forecasts. A computationally

efficient variant (MDSS-SDA) of the purely reordering-

based MDSS-RO implementation has been proposed

that allows one to generate high-resolution precipitation

fields based on coarser-resolution numerical weather

predictions while ensuring that precipitation fields gen-

erated with this new approach are physically realistic. We

also discussed an extension (ECC-mQ-SNP) of the ECC-

Q approach that retains its good sampling properties

while eliminating discontinuities in the ECC-Q ensemble

forecast fields and avoiding random reordering of pre-

dictive samples in the situation where most or all of the

raw ensemble forecasts are zero. A new diagnostic tool,

the fraction of threshold exceedance (FTE) histogram,

has been proposed and was used to demonstrate that the

MDSS-SDA andECC-mQ-SNP ensembles represent the

fractional areal coverage of precipitation exceeding a

predefined threshold better than the StSS ensembles for

all thresholds and better than theMDSS-RO and ECC-Q

ensembles at the lowest threshold. These conclusions

were confirmed by quantitative verification of probabi-

listic, subgrid-scale maximum precipitation fore-

casts derived from the different postprocessed ensemble

precipitation fields. All verification results presented in

section 4 were obtained with 11-member postprocessed

ensembles. For the two ECCmethods this ensemble size is

stipulated by the size of the GEFS ensemble, but the StSS

andMDSS ensembles are not subject to that restriction and

were constructed to be of the same size only to permit a

direct comparison. Results byWilks (2015), Scheuerer et al.

(2017), and Wu et al. (2018) suggest that larger ensembles

could improve the scores for StSS,MDSS-RO, andMDSS-

SDA reported in section 4, but we note that the short-

comings (random reordering, discontinuities) of the StSS

and MDSS-RO method pointed out in section 3 still exist

with larger ensembles.

The poor performance of StSS in all and MDSS-RO

and ECC-Q in dry weather situations was attributed to

the challenges that occur when the raw ensemble fore-

casts (for ECC) or the historic fields (for StSS andMDSS-

RO) contain more zeros than the calibrated forecast

samples they are supposed to reorder. MDSS-SDA

avoids this situation and attained the overall best verifi-

cation scores in our study. Its biggest limitation compared

FIG. 10. Brier skill scores for maximum, analysis-scale 6-h precipitation amounts over each GEFS grid cell and four lead time periods.
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to the StSS and the ECCmethods is that it is not useful in

applications where the spatial domain of interest is large.

Even with a long archive of historic analyses, it becomes

increasingly difficult to find a set of historic analysis fields

where the marginal distributions at all lead times and all

grid points in a large domain resemble those of the cali-

brated univariate forecast distributions. The implementa-

tion presented here alleviates this problem somewhat in

that it reduces the spatial dimension from the number of

analysis scale grid points to the number of forecast grid

points within the domain. It is therefore valuable in

combination with a high-resolution, distributed hydro-

logical forecast system over a river basin of limited size

like the Russian River watershed considered in our case

study. For large basins, the ECC-mQ-SNP method pro-

posed in section 3f is probably the most promising ap-

proach to modeling space–time variability of precipitation

forecast fields. While it cannot represent subgrid vari-

ability as good as an analysis-based modeling approach,

this technique has no limitations with regard to the size of

the spatial domain to which it is applied, and that makes

it a rather universal, multivariate modeling approach. Our

proposed strategy to avoid random reordering—simula-

tion of negative precipitation—is rather ad hoc, and fur-

ther research is required to develop a statistically more

principled way to simulate negative precipitation and

further improve the implied model for the spatial struc-

ture of light precipitation amounts.

The verification performed in this paper has focused

on spatial and subgrid-scale properties of the post-

processed ensemble forecast fields. In a follow-up

project we will evaluate their performance when

used as meteorological forcings of the U.S. National

Water Model.
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APPENDIX A

Construction of the Basis Functions in Fig. 5

The basis functionsu1, . . . , uM are intended to induce

a smooth function h(k) when linearly combined as in (2)

while having a support radius r that is as small as pos-

sible, so that they primarily affect the multiplicative

adjustment within the associated grid cell. There are

numerous ways to define basis functions that fulfill these

two criteria, and here we describe a construction with

which we obtained good results. Using geographic co-

ordinates (f, l), we first define functions q1, . . . , qM via

q
m
(�) :5

"
12

�
f
m
2f .

r

�3
#3
1

"
12

�
l
m
2 l .

r

�3
#3
1

,

(A1)

where (�)1 5max(�, 0). This way, each qm(�) is the

Cartesian product of one-dimensional tricube kernels

(see lower-left corner in Fig. 5) in the meridional and

zonal direction. This choice was made because tricube

kernels are smooth but have a relatively flat top, which

avoids strong spikes of h(k). Moreover, they are compactly

supported, that is, they are zero outside their support ra-

dius r. The basis functions u1, . . . , uM are then obtained

by normalizing these functions at each analysis grid point

u
m
(�) :5 q

m
(�)

�
M

m051

q
m0(�)

, (A2)

thus achieving the desirable property that a constant ad-

justment function h(k) is obtained when all akm0 are iden-

tical. The function um is equal to zero outside the square

with edge length 2r, centered over forecast grid pointm. In

this study we chose r equal to 1.5 times the forecast grid

resolution, which we found to be a good trade-off between

localization and smoothness of the resulting function h(k).

APPENDIX B

Efficient Minimization of Eq. (5)

Define

A5
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let D be the diagonal matrix with diagonal entries

0, 0, max(~zp(~n011), 1), . . . , max(~zp(K21), 1), and denote by

g the vector of spline coefficients. The target function in

(5) can then be written as

T g
0
, . . . , g

K2~n0

� �
5 (Ag2 b)T(Ag2 b)1 l̂gTDg .

This is a quadratic form in g and some basic calculus

shows that the minimizers of this quadratic form can be

found as the solution to the linear equation system

(ATA1 l̂D)g5ATb.
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